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1. The nonlinear schrodinger equation.

Pulse's transmission in optical fiber is described by equation
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For pulse width T, > 5 ps, one can use Eq (1) give by
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Applying the transformation T=t-z/v,, (v, 1s group velocity) equation

(2) 1s re-written as follows:
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Let us introduce a time scale normalized to the input pulse width T, as
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At the same time, we introduce a normalized amplitude U as

A(z,7)= [P, exp(— %)U (z.7) (5)

where P, 1s the peak power of the incident pulse.

The exponential factor in (5) accounts for fiber losses. By using Egs.
(4), (3), U is found to satisfy
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where

the dispersion length L, = ——

the nonlinear length L, =—



Group-velocity dispersion (GVD)
The effect of GVD on optical pulses propagating in a linear
dispersive medium are studied by setting y =0 in Eq ( 3). If we define

the normalized amplitude U(z,T) according to Eq(5) U(z, T) satisfies

the following linear partial differential equation:
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Equation (7) 1s readily solved by using the Fourier-transform

method. If U, (z, o) 1s the Fourier transform of U(z; T) such that

U(z,T)= i JUI(Z, w)exp(—ioT )dw



then it satisfies an ordinary differential equation
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whose solution 1s given by
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where .
U,(0,0)= IU(O,T)exp(in)dT
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Equations (8) and (9) can be used for mnput pulses of

arbitrary shapes.
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We have U(ZaT)_ (T02 —iﬂzz)/z exp[ 2(T02 —l',BZZ) ] (11)



Figl. 3D graph of the
transmission of pulse




Self- phase modulation

In terms of the normalized amplitude U(z; T) defined as in Eq

(5) the pulse-propagation equation (6), in the limit 3,= 0, becomes

ﬁ—U:l,eXp(_aZ)‘UfU, (12)
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Equation (12) can be solved substituting U=Vexp(1®,; ) and equating

the real and imaginary parts so that
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As the amplitude V does not change along the fiber length L, the
phase equation can be integrated analytically to obtain the general

solution
U(L,T)=U(0,T )expli , (L, T)} (14)

where
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with the effective length L defined as
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Equation (14) shows that SPM gives rise to an intensity-dependent

phase shift but the pulse shape remains unaffected.

In the absence of fiber losses, a=0, and L= L. The
maximum phase shift @_, occurs at the pulse center located at
T=0. With U normalized such | U(0,0)|=1, it is given by

Le
==L =plL, (17)
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The physical meaning of the nonlinear length Ly, 1s clear from Eq.

(17)—it 1s the effective propagation distance at which ®@_ .= 1



The SPM-induced spectral broadening is a consequence of
the time dependence of @, . This can be understood by noting that a
temporally varying phase implies that the instantaneous optical
frequency differs across the pulse from its central value ®,. The

difference 0w 1s given by
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Figure 2 Temporal variation of SPM-induced phase shift @, and frequency

chirp oo for Gaussian



Split-Step Fourier Method

To understand the philosophy behind the split-step Fourier method, it

1s usefulto write Eq. (1) formally in the form
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1S an operator containing time derivative
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1s a non-linear operator and 1s a function of A(z,t).
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Solution of equation (19) has the form

Az +dz,1) = exp—ilLdz + N(A)dz |A(z, 1) (22)
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3. Results

So that we can normalize the equation (6) to obtain
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Using Split-Step Fourrier method, we obtain the following results:



The time-shape of intensity and the
changing of this soliton on propagation
path are described in fig 3. From this fig,
can see that the first-order soliton has the
time-shape of sech function and it is not
verying along the propagation path. As

we hope this optical soliton can be used

for optical communication.

Fig 3. Revolution of first-order soliton in time-space




second — order soliton:



Fig 4. Revolution of second-order soliton in Fig.5. Time-shape of intensity of second-order
time-space soliton with some value of &

The time — shape of intensity 1s described in fig 5. From this fig can see
that the the time-shape of intensity 1s verying a little to the first-order soliton. But
the verying of it on the propagation path ( see fig 4) 1s almost different. It has a
intensity- verying period (m/4).



