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1. The nonlinear schrodinger equation.  

Pulse's transmission in optical fiber is described by equation 
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Optical self-steepening 

Nonlinear 

Delayed Raman response 

TR=3-5 fs. 

Nonlinear 

Self- phase modulation 

Nonlinear 

(1) 



For pulse width T0 > 5 ps, one can use Eq (1) give by  
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Applying the transformation T=t-z/vg, (vg is group velocity) equation 

(2) is re-written as follows: 
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 (3) 

Let us introduce a time scale normalized to the input pulse width T0 as 
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At the same time, we introduce a normalized amplitude U as 

where P0 is the peak power of the incident pulse. 

The exponential factor in (5) accounts for fiber losses. By using Eqs. 

(4), (3), U is found to satisfy 

(5) 

   
,

exp

2

sgn 2

2

2

2 UU
L

zU

Lz

U
i

ND





 









 (6) 

the dispersion length 

where 

the nonlinear length 
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Group-velocity dispersion (GVD) 

 The effect of GVD on optical pulses propagating in a linear 

dispersive medium are studied by setting  =0 in Eq ( 3). If we define 

the normalized amplitude U(z,T) according to Eq(5) U(z, T) satisfies 

the following linear partial differential equation: 
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 Equation (7) is readily solved by using the Fourier-transform 

method. If  U1 (z, ω) is the Fourier transform of U(z; T) such that 
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then it satisfies an ordinary differential equation 
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whose solution is given by 
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where 
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 Equations (8) and (9) can be used for input pulses of 

arbitrary shapes. 
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Fig1. 3D graph of the 

transmission of pulse  
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Self- phase modulation 

 In terms of the normalized amplitude U(z; T) defined as in Eq 

(5) the pulse-propagation equation (6), in the limit β2= 0, becomes 
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Equation (12) can be solved substituting U=Vexp(iNL) and equating 

the real and imaginary parts so that 
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As the amplitude V does not change along the fiber length L, the 

phase equation can be integrated analytically to obtain the general 

solution 

      ,,exp,0, TLiTUTLU NL (14) 
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with the effective length Leff defined as 
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Equation (14) shows that SPM gives rise to an intensity-dependent 

phase shift but the pulse shape remains unaffected. 

 In the absence of fiber losses, α=0, and Leff= L. The 

maximum phase shift max occurs at the pulse center located at 

T=0. With U normalized such  | U(0,0)|=1, it is given by  
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The physical meaning of the nonlinear length LNL is clear from Eq. 

(17)—it is the effective propagation distance at which max= 1 



 The SPM-induced spectral broadening is a consequence of 

the time dependence of NL. This can be understood by noting that a 

temporally varying phase implies that the instantaneous optical 

frequency differs across the pulse from its central value ω0. The 

difference δω is given by 
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Figure 2 Temporal variation of SPM-induced phase shift NL and frequency 

chirp δω for Gaussian  



Split-Step Fourier Method 

To understand the philosophy behind the split-step Fourier method, it 

is usefulto write Eq. (1) formally in the form 
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is an operator containing time derivative 

Where 

is a non-linear operator and is a function of A(z,t). 
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Solution of equation (19) has the form 

      tzAdzANdzLitdzzA ,ˆˆexp,  (22) 
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Using Split-Step Fourrier method, we obtain the following results: 

3. Results 

So that we can normalize the equation (6) to obtain 
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Fig 3. Revolution of first-order soliton in time-space 

The time-shape of intensity and the 

changing of this soliton on propagation 

path are described in fig 3. From this fig, 

can see that the first-order soliton has the 

time-shape of sech function and it is not 

verying along the propagation path.  As 

we hope this optical soliton can be used 

for optical communication. 



second – order soliton:  
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 The time – shape of intensity is described in fig 5. From this fig can see 

that the the time-shape of intensity is verying a little to the first-order soliton. But 

the verying of it on the propagation path ( see fig 4) is almost different. It has a 

intensity- verying period (/4).  

Fig 4. Revolution of second-order soliton in 

time-space 
Fig.5. Time-shape of intensity of second-order 

soliton with some value of  


